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Abstract: Remote sensing in precision plant breeding involves using advanced technologies, such as 

drones, satellites, and sensors, to collect detailed data on plant traits and environmental conditions. These tools 
capture information on crop health, growth, stress responses, and other vital parameters through non-destructive 
methods like multispectral and hyperspectral imaging. This data helps plant breeders make informed decisions on 
selecting and developing crops with desirable traits, improving breeding efficiency, and accelerating the 
development of resilient, high-yield varieties tailored to specific environments. The equipment and characteristics 
of remote sensing used to date, as well as directions for the future development of these studies. 
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Резюме: Дистанционните методи за наблюдение на Земята в прецизното растително 
селектиране включва използването на съвременни технологии, като дронове, сателити и сензори, за 
събиране на подробни данни за растителните характеристики и условията на околната среда. Тези 
инструменти улавят информация за здравето на културите, растежа, реакциите на стрес и други 
важни параметри чрез дистанционни методи като мултиспектрални и хиперспектрални изображения. 
Тези данни помагат на селекционерите да вземат информирани решения при избора и 
разработването на култури с желани характеристики, като подобряват ефективността на 
селекцията и ускоряват създаването на устойчиви, високодобивни сортове, пригодени за конкретни 
условия. Разгледани са оборудването и характеристиките на дистанционното наблюдение, които са 
използвани до сега, както и насоките за бъдещото развитие на тези изследвания.  

 
 
Introduction 

 

Humanity faces an unparalleled challenge to meet the coming decades' growing food 
demands, population growth, rising per capita consumption, shifting climate conditions, limited arable 
land, and increasing pressure on water and resources. To boost crop productivity, one key strategy is 
enhancing crop genetics for greater efficiency and resilience [1]. 

Plant phenotypic traits are the observable characteristics of an organism, such as its 
appearance, behaviour, or physiology. They directly result from the interaction between an organism's 
genetic makeup (genotype) and its environment. [2]. The selection of cultivars is increasingly 
dependent on yield-related indicators, chosen either directly or through marker-assisted selection once 
the quantitative trait loci (QTLs) responsible for the trait's variability have been identified [3]. While 
genotyping technologies have advanced rapidly, phenotyping technologies have lagged [1, 3, 4].  
Plant phenotyping is a transdisciplinary field of research that employs non-invasive imaging and 
sensor-based time-series data, frequently integrated with high-throughput measurements, to study 
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plant anatomy, physiology, and biochemistry [4]. Phenomic traits are a subset of phenotypic traits 
measured using high-throughput technologies, often quantitative and automated. They emphasise the 
systematic and large-scale measurement of phenotypes.  

In recent decades, plant phenotyping has rapidly evolved, creating numerous opportunities to 
address agriculture's increasing and diverse demands. However, research in remote sensing for plant 
phenotyping is primarily concentrated within the EU, with countries like Germany, France, and the 
United Kingdom leading the way [5]. In Bulgaria, this field remains relatively new and is still in early 
development [6–8]. The progress in phenotyping must continue in tandem with the integration of 
innovative technologies, data standardisation [9–11], and multidisciplinary research efforts [2, 5, 9].  

In field crops, grain yield is the most critical phenotypic trait for breeders, as it serves as a 
comprehensive indicator that reflects the combined influence of key characteristics and genes, making 
it biologically and economically significant. Beyond yield, there is a range of secondary traits that, 
while theoretical in some instances, have been demonstrated to contribute to overall crop performance 
in several cases [12]. 

To accurately capture these traits, remote sensing phenotyping has developed techniques that 
offer a top-of-canopy perspective, enabling accurate assessments of visible plant organs known as 
aboveground traits. However, this approach has clear limitations when assessing roots, lower leaves, 
or fruits obscured from the sensor's view. 

Aboveground phenomic traits include plant development and biophysical and biochemical 
properties, photosynthetic efficiency in utilising solar energy during the primary growth phase, plant 
phenology, plant stress evaluation, and yield and quality assessment. 

Selecting root phenomic traits for crop improvement is more challenging than aboveground 
traits because roots cannot be directly observed through remote sensing technologies. However, 
using remote sensing, root traits can still be characterized by analyzing how root processes influence 
crop productivity under specific field conditions. Moreover, targeted physiological approaches can help 
identify proxy traits that serve as indicators of root function, aiding in the selection and improvement of 
root-related traits [13]. 

Phenotyping efforts are often focused on specific critical stages of plant development, but 
there is growing anticipation that field phenotyping will evolve toward continuous, whole-season 
monitoring. This approach would enable the identification of critical time windows in crop growth and 
provide a deeper understanding of interactions between genetics, environment, and management 
practices (G×E×M) [13]. 

This review explores current efforts, offers insights, and highlights potential research 
directions for utilising optical remote sensing in field-based plant phenotyping. The focus is on vital 
phenotyping tasks, particularly those related to plant stress and growth. 

This review mainly concentrates on studies that meet the following criteria: (1) published in 
peer-reviewed or open-reviewed journals and conferences; (2) published within the past seven years 
(2018 to 2024); and (3) focused on the application of optical remote sensing for field plant 
phenotyping. The literature was sourced primarily from Google Scholar, using keyword combinations 
such as "phenotyping plant review" for the search. 

 
Aboveground phenotypic traits 
 

Unmanned aerial vehicles (UAVs) are among the most widely used tools in field phenotyping 
due to their relatively low cost and ability to capture high-resolution images with fine temporal and 
spatial detail. UAVs equipped with RGB, multispectral, or hyperspectral cameras have been utilised to 
capture a wide range of phenotypic traits, including geometry-related (canopy height, LAI, biomass, 
plant density); physiological (chlorophyll and other pigments); stress detection (weed, water, disease); 
and nutrition status [14,15]. 

Numerous studies have explored the application of imaging sensors and artificial intelligence 
(AI) in detecting plant stress [16–19]. AI refers to systems that mimic human intelligence, allowing 
machines to engage in tasks such as reasoning, learning, perception, and decision-making [20]. AI 
encompasses various subfields, including machine learning (ML), deep learning (DL), natural 
language processing, and computer vision. Although AI has only recently been applied to plant stress 
detection, its adoption has accelerated rapidly since 2019. However, much of the research focuses on 
biotic stress, as it is easier to detect due to the visible symptoms, such as necrotic and chlorotic 
lesions caused by disease. This emphasis is likely due to the widespread use of RGB sensors, 
particularly suited to capturing these visual cues. Deep learning is currently the most popular AI 
methods, followed by machine learning algorithms like support vector machines (SVM), artificial neural 
networks (ANN), and random forests. 

Hyperspectral data with nonparametric models is mainly used in plant stress phenotyping [18], 
such as disease severity assessment [6]. A notable development is the custom-supervised 3D 
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Convolutional Neural Network architecture, designed to directly process spatial and spectral 
information within hypercubes using 3D convolutional operations. This neural network was recently 
applied in research to detect plant diseases from hyperspectral images, demonstrating its potential in 
plant phenotyping [21]. 

The rapid advancement of smartphones with high-resolution RGB cameras and powerful 
computing capabilities has created highly versatile applications. Building on this progress, the 
development of next-generation portable or wearable phenotyping tools has the potential to be a 
disruptive technology, dramatically transforming and accelerating the phenotyping process [9].  

High-resolution optical satellite imagery has also been employed for field phenotyping, offering 
valuable data on crop traits at both spatial and temporal scales [22]. However, the high cost of such 
imagery remains a significant barrier to its widespread, practical application.  
 
 Root system phenotyping 
 

Roots are vital organs responsible for regulating water and nutrient uptake in crops, playing a 
pivotal role in drought tolerance and significantly influencing both yield and quality. However, since 
roots function below ground, direct observation is challenging. While significant progress has been 
made in controlled root phenotyping studies [9]Translating these findings to real-world field conditions 
remains uncertain. 

In the field, direct root evaluation, or in-situ root phenotyping, is not feasible with traditional 
optical remote sensing techniques [13,23,24]. Nonetheless, indirect indicators, or proxies, offer a 
valuable alternative. Canopy temperature (CT), for example, can serve as a reliable proxy for 
assessing root capacity under hot and dry conditions [25]. Cooler canopy temperatures suggest a 
more extensive, more efficient root system, as greater root mass allows for better water uptake, 
enabling crops to maintain cooler canopies under drought and heat stress [24]. 

 
Data standardisation, uncertainty analysis and propagation 
 

Phenotyping technologies generate large volumes of diverse data from remote sensing, 
imaging, and sensor-based platforms. Standardisation ensures that this data can be effectively 
compared, shared, and utilised across studies and platforms [26]. 

Standardising phenomic data involves establishing common protocols and formats for data 
collection, processing, and reporting. This allows for consistency across experiments and makes data 
more reusable in larger multi-omics and multi-site research efforts. It includes standardising units of 
measurement, trait definitions, data storage formats, and metadata documentation. Without these 
standards, it becomes difficult to integrate phenotypic data into larger datasets for comparative 
studies, limiting the potential of high-throughput phenotyping technologies. 

Uncertainty analysis in phenotyping quantifies potential errors or variations in data collection 
and interpretation. Variability can arise due to differences in environmental conditions, measurement 
technologies, or biological factors. By identifying and understanding these uncertainties, researchers 
can improve the reliability and accuracy of their phenotypic assessments. This analysis is fundamental 
when correlating phenotypes with genotypes, where even minor inaccuracies can lead to incorrect 
conclusions about genetic traits. 

Propagation of uncertainty refers to how uncertainties in individual measurements or variables 
can affect the overall outcome of phenotypic analysis. As phenotypic data moves through various 
stages—from collection to analysis and finally to decision-making in breeding programs—errors can 
compound, leading to significant deviations from true values. Effective uncertainty propagation 
analysis helps researchers model how these errors accumulate and can provide insights into which 
variables are most prone to uncertainty. Addressing these issues early in the data processing pipeline 
helps ensure the accuracy of downstream analyses, such as genomic prediction and trait selection. 

 
Multidisciplinary research 
 

Remote sensing has become a key technology in phenotyping, especially for extracting traits 
related to genomic data. The integration of remote sensing techniques with genomic prediction models 
has the potential to revolutionise plant breeding and crop improvement strategies. However, a 
multidisciplinary approach is still necessary [2,5] to fully realise its benefits, requiring collaboration 
across fields such as genetics, agronomy, data science, and engineering.  

In Bulgaria, this collaborative effort began with the launch of the “National Research 
Programme-Smart Crop Production” funded by the Bulgarian Ministry of Education and Science, 
approved by the Decision of the Ministry Council №866/26.11.2020 г. At a European level, the Cost 
Action PANGEOS CA22136 (www.pangeos.eu, last visited 17.10.2024) aims to convene leading 
experts in remote sensing technologies, young researchers and innovators, government, nonprofits, 
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and other stakeholders from European and neighbouring counties to establish best practices and 
calibration protocols, improve the scalability and repeatability of each technology and application 
across European environmental conditions, and explore new innovative advancements beyond the 
state-of-the-art in field phenotyping with focus on sensor synergies for biophysical trait retrievals. 

 
Conclusion 
 

Plant phenotyping efforts are focused on discovering new complex traits, identifying heritable 
diversity through high-throughput selection, and producing reusable data sets. While technological 
advancements are progressing quickly, further contributions from academia and industry are required 
to develop robust methodologies, advance technologies, establish protocols, and integrate data more 
effectively. 

Although much of the focus remains on aboveground traits, noninvasive field phenotyping is 
evolving into a reliable, accessible tool that helps scientists and breeders analyse crop characteristics 
and improve traits in diverse and dynamic field environments. 

Root phenotyping advances rapidly, deepening our understanding of essential traits in 
controlled environments. Notable progress has also been made in extending root phenotyping to field 
conditions, mainly by integrating root structure-function models and alternative remote sensing 
techniques beyond optical methods. For instance, thermal remote sensing has shown promise and 
can be seamlessly incorporated into field experiments, offering valuable insights into root function and 
its impact on crop performance. 

Standardised data collection and analysis methods and a robust understanding of uncertainty 
and its propagation are key to ensuring that phenotyping remains a reliable and valuable tool in 
advancing plant breeding. 

A multidisciplinary effort remains essential for advancing phenotyping and linking it to 
genotyping. Bridging the gap between the two requires collaboration across multiple disciplines, 
including genetics, agronomy, data science, engineering, and bioinformatics.  
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